
NASA-T_-_12066

Extra-High Speed hIatrix

h Iultiplication Oll the Cray-2

David H. Bailey

April 13. 1987

RNR-87-006

Abstract

The Cray-2 is capable of performing matrix multiplication at very high rates. Using

library routines provided by Cray Research, Inc., performance rates of 300 to 425 MFLOPS

can be obtained on a single processor, depending on system load. Nearly four times these

rates can be achieved with all four processors running simultaneously.

This article describes how matrix multiplication can be performed even faster, up to

twice the above rates. This can be achieved by (1) employing Strassen's matrix multi-

plication algorithm to reduce the number of floating-point operations performed and (2)

utilizing local memory on the Cray-2 to avoid performance losses due to memory bank

contention. The numerical stability and potential for parallel application of this procedure

are also discussed.

The author is with the Numerical Aerodynamic Simulation Systems Division at NASA

Ames Research Center, Moffett Field, CA 94035.

Introduction
Recently a number of high-performance multi-processor vector computers have become

available for scientific computation. One of these is the Cray-2, manufactured by Cray

Research, Inc. It features over 268 million 64-bit words of main memory, which is between

one and two orders of magnitude more than that provided in previous generations of

supercomputers. In addition to this large main memory, the Cray-2 features four central

processing units (CPUs), each with a hardware clock period of only 4.! nanoseconds, as

compared to 9.5 nanoseconds of the previous Cray X-MP line. Thus each Cray-2 CPU

is potentially about twice as fast as a Cray X-MP CPU. Unfortunately, memory chips

commensurate in speed with the fast Cray-2 CPU were not available when the first few

Cray-2 units were manufactured, and the DRAM chips that were used resulted in overall

performance rates on typical vectorized FORTRAN programs that are only on a par with

the Cray X-MP.

For applications that can effectively utilize certain assembly-coded library routines,

however, the higher power of the Cray-2 can be harnessed. In particular, Cray's library

routine for matrix multiplication (MXM) is capable of speeds that are close to the peak

hardware speeds. For one processor running without memory interference from other pro-

cessors, a performance rate of 425 million ttoating-point operations per second (MFLOPS)

has been achieved on a matrix multiplication in a stand-alone environment. Even with the

other processors busy as in a normal operating environment, rates near 300 MFLOPS can

easily be achieved. Using a four processor, multi-tasked version of this routine, over 1700

MFLOPS has been achieved.

Can matrices be multiplied on the Cray-2 significantly faster than this? Yes. In fact,

large matrices can be multiplied with more than twice the speed of the MXM routine.

Clearly such speedups cannot be obtained solely by more efficient implementation of the

usual matrix multiplication scheme, although some improvement can be made in this area.

The key to such speedups is to employ an advanced algorithm that produces the ma-

trix product using fewer floating-point operations, while still maintaining a high level of

vectorization and functional unit concurrency.

Strassen_s Matrix Multiplication Algorithm

The fact that matrix multiplication can be performed with fewer than 2n 3 arithmetic

operations has been known since 1969, when V. Strassen published an algorithm that

asymtotically requires only about 4.7n 2"s°7 operations [1]. Since then other such algorithms

have been discovered [2], and currently the best known result is due to Coppersmith and

Winograd [3], which reduces the exponent of n to only 2.496.

These more recently discovered algorithms are considerably more complicated than

Strassen's algorithm and do not significantly improve upon Strassen's algorithm unless the

matrices are quite large (i.e., 1,000 × 1,000 or so). Thus this article will focus on the

implementation of Strassen's algorithm, which is as follows:

Let the matrices A, B, and C be divided into half-sized blocks:

CNC22]

Then the result may be calculated as follows:

= (11 + A=)IZll + B=)
P2 = (A21 + A22_Bll

Ps = All(B12- B22)

P4 = A2Z(Bzx - B_x)

Ps = (All + Alz)Bzz

P6 = A.)(B. + Z 2)
]'7 = (At2- A22)(B21 + B22)

C_ = P_ + P4- Ps + P7

C12 - P._ + P5

C21 = P2 + P4

C_2 = P_ + P3- P2 + P6

It should be pointed out that the intermediate matrices P1, P2," • •, P7 may all be computed

concurrently. The last four lines may also be computed concurrently_ but their cost is gen-

erally insignificant compared to the previous seven lines. In any event Strassen_s algorithm

appears to be fairly well suited for multi-processor computation.

The computational savings of employing Strassen's algorithm is obtained by noting

that this algorithm requires only seven half-sized matrix multiplications to be performed

instead of eight. Thus for fairly large matrices, where the cost of performing this algorithm

is completely dominated by the cost of multiplying the half-sized blocks, a savings of

approximately 14% can be realized (in theory) over the traditional method.

Strassen's method can of course be recursively employed to multiply the half-sized

blocks, and so on down to individual matrix elements if desired. For every level of recursion,

an additional 14% savings can be realized. However, in practice this recursion is only

performed down to the level at which the loss due to bookkeeping costs and short vector

lengths overwhelms any savings due to fewer floating-point operations being performed.

On the Cray-2 this crossover point was found to be for matrices of size 100 × 100.

Reducing Memory Bank Contention

The Cray-2 has 128 independent, interleaved main memory banks. Thus a vector fetch

of 64 contiguous data words obtains each word from a separate bank, provided each of the

requested banks is not busy. However, with four CPUs actively accessing main memory,

the probability that a requested bank will be busy is fairly high. As a result, the overall

performance of the Cray-2 on memory intensive programs such as matrix multiplication is

reducedas much as 35%belowwhat it wouldbe in the absenceof contention. This loss
will be reducedin the future asfaster memorychips become available.

One way to avoid this performance loss is to employ the 16,384 word local memory

in each CPU to perform block matrix multiplications. In this way main memory traffic

is sharply reduced, and the CPU computational units can perform nearly at peak speed,

even when the system is busy with jobs on the other CPUs. Don Calahan of the University

of Michigan has prepared an assembly-coded matrix multiplication routine based on this

technique, and this routine was employed in these calculations.

Performance Results

For testing purposes, Strassen's algorithm was coded in FORTRAN for square matrices,

although it should not be difficult to generalize the implementation for non-square matri-

ces. Calahan's local memory routine was referenced for matrices smaller than 100 × 100.

Recursion was obtained merely by replicating the FORTRAN subroutine and changing the

name at each level of recursion. Although little real work was performed in the FOR-

TRAN subroutines, these operations were vectorized by the FORTRAN compiler. No

attempt was made to utilize more than one of the four Cray-2 CPUs. However, if this were

done, speedups of nearly four times should be possible because inter-processor memory

bank contention is minimized by the use of Calahan's routine.

The usual implementation of Strassen's routine requires additional memory. In this

program, a scratch array of size 3n z was required in addition to the factor and result

arrays. On a large memory computer such as the Cray-2, memory space is not a serious

issue, and in fact trading memory space for increased performance is an effective use of the

Cray-2. On systems where memory is more dear, a version proposed by Kreczmar [4] may

be preferable. That version reduces the extra storage requirements to 2rt2/3.

Table 1 compares the performance of this implementation with that of the Cray library

matrix multiplication routine. Columns headed "Strassen Routine" contain data for the

technique described above, while "Cray Library MXM" contain data for the Cray library

matrix multiplication routine. Error statistics are reported as the Euclidean norm of the

error matrix, as determined by comparison with a double-precision calculation (double-

precision calculations were only feasible up to 1,024 × 1,024). All of these figures are

based on operations with pseudorandom normally distributed data.

It can be seen from the results in the table that the new routine is approximately

35% faster than MXM for small matrices. This speedup is entirely due to Calahan's local

memory matrix multiplication routine. Beginning at size 128 × 128, a larger speedup is

obtained, indicating the positive effect of the Strassen algorithm. Some irregularity can be

seen in the speedup figures from entry to entry, but these figures are monotonic if restricted

to powers of two or to non-powers of two. For a 2,048 × 2,048 matrix multiplication, which

was the largest case studied, a speedup factor of 2.01 was obtained. Again, all but 35% of

this speedup is due to usage of the Strassen algorithm.

M_trix

Size

64

100

128

200

256

400

512

800

1024

1600

2048

Strassen Routine

CPU Time I Error

0.0014 I 4.959 ×10 -1_

0.0057

0.0112

0.0474

0.0881

0.3548

0.6452

2.5878

4.7107

18.3251

33.1119

1.214 ×10 -11

1.962 x 10 -11

4.820 × 10 -11
7.842 ×10 -11

1.936 ×10 -l°

3.163 ×10 -l°

7.748 × 10 -l°

1.272 ×!0, °9'

Cray Library MXM

CPU Time

0.0019

0.0018

0.0162

0,0636

0.1401

0.4844

Error

4.959 × 10 -12

9.187 ×10 -12

1.452 × 10 -11

5.350. × 10 -11
8.t88 × 10 -11

2.996 × 10 -1°

1.0473 4.631 ×10 -1°

3.7262 1.694 ×10 -09

8.7800 2.619 x10 -09

28.3005 I.

66.6682

Table 1: Comparative Matrix Multiplication Performance

Time

Ratio

1.35

1.35

1.45

1.34

1.59

1.37

1.62

1.44

1.86

1.54

2.01

The actual speedup due to Strassen's algorithm appears to be about 12% for each

level of recursion, as compared to the theoretical speedup of 14%. This indicates that the

overhead of performing Strassen's algorithm is minimal.

Numerical Stability of Strassen's Algorithm

It can be seen from the figures in the table that the numerical errors in Strassen's

algorithm, although slightly larger than the ordinary inner product method, appear to be

well under control in the cases studied. In general Strassen's algorithm is known to be

not as numerically stable as the inner product calculation, although it still satisfies an

acceptable stability condition.

In 1975 Webb Miller [5] showed that any scheme satisfying a sufficiently strong notion

of stability would have to perform at least n 3 multiplications to evaluate a n × n matrix

product. Thus the ordinary inner product method is optimal for this stabi!ity condition.

However, Strassen's algorithm is known [5] to satisfy a condition known as simultaneous

Brent stability. For our purposes these two stability conditions can be defined as follows.

Let cik = _j aijbjk denote the usual inner product of two matrices A and B. Let Aci_

denote the numerical error in calculating cik by some particular procedure (this term is more

precisely defined in Miller's paper). Then simultaneous Brent stability and simultaneous

strong stability are defined as, respectively,

Ac,k < C(maxl%i)(maxlbjkl) foreveryi,k
.1 J

ZXcik < C_-_]aijbjkl foreveryi, k
J

5

An examplewhereStrassen'smethodis not strongly stableis as follows. Let e denote

a value on the order of the machine "epsilon" (i.e., 2 -b, where b is the number of mantissa

bits in the representation of floating-point numbers). Consider the 2 × 2 matrix product

1 e e2 1 = 1 + e3 2e

Note that ell is of order e_. In performing Strassen's algorithm "to evaluate this product,

ell is computed as

cH = 2e(l + e)- e(l - e=)- (I + 0) + (I --e)(l-b e2)

Because this calculation adds and subtracts numbers of order unity, the numerical error

in calculating eli is potentially of order e. However, both terms of the sum in the strong

stability condition for ell above are of order e2. Thus the strong stability condition can

fail by an unbounded factor -- the greater the level of machine precision, the greater the

potential error factor.

In other wor(ls, these results imply that matrix products computed using the Strassen

algorithm can only be relied on to a level of accuracy that is on the order of the machine

epsilon times the largest value of the matrix. For most applications, this degree of accuracy

is completely acceptable -- nothing more is required of a linear equation solution, for

example. Certainly away from a set of matrices of small measure there is no problem

whatsoever, other than a somewhat faster accumulation of error due to the increased

number of additions and subtractions that are part of Strassen_s algorithm.

Conclusion

Strassen's algorithm appears to be a practical means of accelerating matrix multipli-

cation. It produces a significant speedup of this operation whenever the matrices are

sufficiently large to overcome the effects of bookkeeping costs and the shorter vector length

of block matrix operations at the base level. These requirements should be met for matri-

ces of reasonable size on a variety of currently available scientific computer systems. Thus

this algorithm should be considered by anyone wishing to implement a high-performance

matrix multiply routine for scientific computation.

6

REFERENCES

1. Strassen, V., "Gaussian Elimination Is Not Optimal", Numerical Mathematics, Vol.

13 (1969), p. 354-356.

2. Pan, V., "New Fast Algorithms for Matrix Operations", SIAM gournM on Comput-

ing, Vol. 9 (1980), p. 321-342.

3. Coppersmith, D., and Winograd, S., "On the Asymptotic Complexity of Matrix

Multiplication", SIAM Journal on Computing, Vol. 11 (1982), p. 472-492.

4. Kreczmar, A., "On Memory Requirements of Strassen Algorithms", in Algorithms

and Complexity: New Directions alzd Recent Results, J. F. Traub, ed., Academic

Press, New York, 1976.

5. Miller, W_bb, "Computational Complexity and Numerical Stability", SIAM JournM

on Computing, Vol. 4 (1975), p. 97-107.

6. Kronsjo, Lydia, Computational Complexity of Sequential and Parallel Algorithms,

John Wiley, 1985.

